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Abstract

We use vehicle-to-vehicle communication to make individualized traffic predictions
on board of connected vehicles. Traditionally, traffic predictions rely on physics-
based traffic models, where the propagation of congestion waves is simulated. Here
we propose a hybrid model in which we supplement physics-based models with
deep learning. We use a recurrent neural network to correct the errors of physics-
based predictions and improve overall accuracy. Our model predicts velocity up to
40 seconds into the future with improved accuracy over physics-based baselines.

1 Introduction

The ability to predict future slowdowns on highways is beneficial both to individual vehicles and
the highway population collectively. Vehicles may use such information to drive more smoothly
improving safety, comfort, fuel economy and overall traffic throughput. Vehicle-to-vehicle (V2V)
connectivity allows for individualized and more accurate predictions on board of connected vehicles
as it enables a connected vehicle (which we call ego) to obtain information from vehicles ahead
(called lead); see Fig. 1(a). The lead car’s past data may then help predict the future of the ego
car, as the ego will encounter the traffic the lead has already met. Such prediction can be done by
physics-based models [1, 2, 5, 8, 9, 12, 16, 17, 18, 21], which capture the propagation of congestion
waves along the highway, or by data-driven methods [3, 10, 14, 20]. Here we combine physics-based
models with data-driven methods in a hybrid approach.

We use data collected by connected vehicles on public highways [15] to make individualized traffic
predictions with a horizon of up to 40 seconds. Related work using deep neural networks makes
either longer-term large-scale traffic predictions using road sensor data [10, 14], or very short-term
predictions using video or LIDAR data [3, 20].

In this paper, we propose a hybrid method in which a recurrent neural network is trained to learn and
correct the errors in the prediction of a physics-based model. Unlike a purely deep learning approach,
our method leverages first principles from physics and insights from the study of traffic flow. At the
same time machine learning may discover higher order correlations that are not captured by the first
principle model, tune the model to the specific traffic conditions at hand, or improve robustness to
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Figure 1: (a) Connected vehicles traveling on the highway where an ego vehicle intends to predict its
future motion based on a lead vehicle’s past data. (b,c) Experimental position and speed data. (d,e)
The simplest first principle-based position and speed prediction.

unprocessed noisy signals. Our method achieves better accuracy than either a purely physics-based
baseline or a pure machine learning approach using similar input features.

2 Background in Traffic Models

We focus on individualized traffic forecasting by predicting the trajectory of a connected vehicle
(called ego) based on position and speed data obtained from another connected vehicle ahead (called
lead) using V2V communication. Figure 1(b,c) show experimental position and speed data that were
measured via GPS on connected vehicles driven on public roads as described in [15]. Since the ego
vehicle undergoes qualitatively similar speed fluctuations as the lead, it allows the ego to predict its
future motion based on the lead vehicle’s past data transmitted through connectivity.

2.1 Physics-based Models

There exist various physics-based models to describe vehicular traffic. These include car-following
models such as the OVM [2], the IDM [19] and models with time delays [8, 17], and traffic flow
models like the LWR model [12, 18] and its novel formulations [9], the CTM [5] and the ARZ
model [1, 21]. An elementary car-following model is the one by Newell [16], in which each vehicle
copies the motion of its predecessor with a shift in time and space. Accordingly, the ego vehicle’s
position XE is the same as the lead’s position XL with a shift T in time and a shift wT in space:

XE(t) = XL(t− T )− wT, (1)
where w is the speed of congestion waves in traffic. Newell’s model allows one to predict the ego
vehicle’s future motion as illustrated in Fig. 1(d,e). Using data about the lead and ego vehicles’ past
motion (black and blue) up to the prediction time t (vertical line), one can identify the time shift T
between the trajectories by solving (1) for T . Then, the ego’s future speed vE(t+ θ) over a horizon
θ ∈ [0, T ] (green) is predicted by translating the lead vehicle’s past trajectory (red):

ṽE(t, θ) = vL(t+ θ − T ). (2)

Figure 1(d,e) illustrate that such a simple prediction (with w = 5 m/s) can qualitatively capture an
upcoming slowdown, although there are quantitative errors in the ego’s speed preview. One can
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potentially improve prediction via more sophisticated first-principle models, however, the uncertainty
of human driver behavior makes it challenging to achieve low prediction errors.

2.2 Related Work in Deep Learning

Using V2V connectivity to predict traffic by means of deep learning is a new area. Wang et al. use
V2V communication for perception around obstacles and for making short-term trajectory predictions
in urban environments [20]. Similarly, [3, 6, 11] make short-term predictions in the order of 3 seconds
for individual car trajectories in urban traffic using sensor data and not V2V data. Our work focuses
on making intermediate-term predictions (10-40 sec) of highway traffic via V2V connectivity.

Other works focus on long-term (10-20 min or longer) traffic prediction at certain road locations by
considering large-scale road networks. Various architectures have been proposed in the literature to
achieve this goal, such as 2D CNNs [14], recurrent convolutional architecture [10], graph convolu-
tional networks [4], general regression neural networks [13] or spatio-temporal LSTM [22]. These
predictions are usually lower in spatial and temporal resolution.

3 Methods

In what follows, we propose a hybrid method in which an a priori prediction from Newell’s model is
improved by deep learning. In this way, we maximally leverage the insights of the physics-based
model and focus on learning higher order fluctuations in the signal. We explore two configurations of
this method: (a) using the Newell prediction as additional input feature, called VelLSTM-FC, and (b)
outputting the residual between the Newell prediction and the ground truth, called ResLSTM-FC.

We make the predictions in discrete time ti = i∆t, i ∈ Z with a time step of ∆t = 0.1 s. For
VelLSTM-FC, the input x consists of two time series: k time steps of the ego’s past ve-
locity vE(i− k + 1), . . . , vE(i) and l time steps of the Newell prediction ṽE(i, 1), . . . , ṽE(i, l).
The output y is l time steps of the ego’s predicted future velocity v̂E(i, 1), . . . , v̂E(i, l). For
ResLSTM-FC, the input x also includes the residual R(i, j) = vE(i+ j)− ṽE(i, j) of Newell’s
model R(i,−k + 1), . . . , R(i, 0), while the output y is the next l time steps of the predicted residual
R̂(i, 1), . . . , R̂(i, l). Then, the speed prediction v̂E is reconstructed as v̂E(i, j) = R̂(i, j) + ṽE(i, j).

Model Architecture VelLSTM-FC and ResLSTM-FC use the same encoder-decoder architecture.
We use a two-layer LSTM encoder with ReLU and tanh activation functions [7] to encode input into a
hidden state vector h = LSTM-Enc(x) where we initialize the hidden state vector randomly. The input
vectors are concatenated into a single sequence: x = [vE(i−k+ 1 : i) ṽE(i, 1 : l)] for VelLSTM-FC
and x = [vE(i − k + 1 : i) ṽE(i,−k + 1 : l) R(i,−k + 1 : 0)] for ResLSTM-FC. This structure
accommodates different numbers of time steps for different inputs. The hidden state vector h is then
passed to a linear decoder layer which predicts l future time steps in one shot y = Dec(h). We found
that predicting multiple time steps at once helps relative to predicting one time step autoregressively.
The associated hyperparameters were tuned in the ranges listed in Appendix A.

4 Results

Dataset Data were collected by driving five connected vehicles in the Wednesday morning peak-
hour traffic along US39 near Detroit, Michigan [15]. Each vehicle measured its position and speed by
GPS, which were sampled and transmitted amongst the vehicles every 0.1s. Two vehicles travelled
farther ahead of the other three with average distance of around 1300 and 900 m. This separation
created six lead-ego vehicle pairs, and we use 1000 s data from two distant pairs under various traffic
conditions. We constructed samples using rolling windows with 600 input and 400 output frames.
Train, validation, and test data were separated as in Fig. 1(c) and normalized based on the train set.

Prediction Accuracy We compute two performance metrics: the velocity error (VE) at a specific
prediction horizon θj = j∆t and the average velocity error (AVE) that is a mean over various
horizons, for a given set I of samples (e.g. the test set) with |I| elements:

VE(j) =
1

|I|
∑
i∈I
|v̂E(i, j)− vE(i+ j)|, AVE(j) =

1

j

j∑
m=1

VE(m). (3)
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Method VE@10s VE@20s VE@30s VE@40s AVE@40s

Constant Velocity 3.94 5.10 5.69 6.78 4.61
Newell (translated) 5.37 5.40 5.08 4.77 5.24

Vel-FC 4.59± 0.38 5.88± 0.27 6.36± 0.48 7.38± 0.49 5.48± 0.15
Ego-only LSTM-FC 5.45± 0.44 7.33± 0.63 7.86± 0.86 7.03± 0.81 6.23± 0.48
VelLSTM-FC 4.67± 0.86 6.15± 0.54 6.63± 0.54 6.63± 0.88 5.43± 0.75
ResLSTM-FC 4.24± 0.31 4.49± 0.18 4.98± 0.26 5.79± 0.57 4.34± 0.14

Table 1: Results for the test set (t ∈ [350, 470] seconds) shown in Fig. 1(c). Forecasting accuracy at
θ = 10, 20, 30, 40 seconds and mean accuracy over 40 seconds is shown. All numbers are in m/s.
Errors are shown as mean plus minus one standard deviation over five trainings with random seeds.

Figure 2: (a) Velocity error versus prediction horizon for constant speed preview (grey), Newell’s
model (red) and ResLSTM-FC method (purple). (b) Predictions compared to the ground truth (green)
for a selected sample. Purple shading shows the standard deviation of results over five trained models.

Based on these metrics, we compare the performance of the proposed method to the following
baselines: constant speed prediction, Newell’s model, and pure deep learning in which only the ego’s
velocity is used as input (called Ego-only LSTM-FC). Table 1 and Fig. 2(a) summarize our results,
while a sample prediction is illustrated in Fig. 2(b).

The prediction accuracy decreases over the prediction horizon with different rates for different
methods. The constant speed prediction is accurate over short horizons, but has rapid error growth,
while Newell’s error starts higher and grows less. The ResLSTM-FC method combines the advantages
of both of these baselines and outperforms them for prediction horizons of 15 ≤ θ ≤ 30 seconds.
The Ego-only LSTM-FC method performs significantly worse than ResLSTM-FC, which validates
our hybrid approach and shows the benefits of data from V2V connectivity. Lastly, we compare
ResLSTM-FC to a monolithic fully connected network (called Vel-FC; see Appendix B) which has
the same input and output as VelLSTM-FC. These networks have similar performance, and they are
both outperformed by ResLSTM-FC, which gives the overall best average velocity error. This shows
that, apart from supplementing deep learning with the physics-based Newell’s model, predicting the
residual is also an important element of our method.

5 Discussion

Hybrid models that integrate physics-based and data-driven elements were constructed for traffic
prediction utilizing vehicle-to-vehicle communication. The model ResLSTM-FC showed improved
accuracy over both purely first principle-based and purely deep learning-based baselines. This model
used Newell’s prediction as input to an LSTM neural network and the prediction of the residual error
as output. ResLSTM-FC shares the best characteristics of each of our numerical baselines, having
small error for short-term predictions and having slow growing error as forecasting horizon increases.
The model was trained and tested on unprocessed GPS data, and the observed robustness makes it a
feasible candidate for real-time on-board traffic predictions for connected vehicles.

We hypothesize that further improvements in our model can be obtained by more careful corrections
of errors in the underlying physics model. Namely, while the Newell prediction often succeeds in
predicting the degree of a slowdown, it is often slightly early or late. This corresponds to a time-shift
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error. Future work includes adding prediction of this time shift or time warp to ResLSTM-FC. Another
potential area for improvement would be to replace the Newell model with a more sophisticated
first-principle baseline.
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A Hyperparameter Tuning

We tuned hyperparameters over the ranges shown in Table 2.

Hyperparameter Range

Input Time Steps (k) 300, 400, 500, 600
LSTM Hidden Units 10, 20, 50, 100, 200
Learning Rate 0.0005, 0.001, 0.005, 0.01
Prediction Horizon (l) 50, 100, 200, 300, 400

Table 2: Hyperparameter tuning ranges. Bold values correspond to best performance.

B Vel-FC Model Architecture

The model architecture of Vel-FC is shown in Table 3.

Layer Hyperparameters

Linear 1 in_features=1000, out_features=200, bias=True, followed by ReLU
Linear 2 in_features=200, out_features=200, bias=True, followed by ReLU
Linear 3 in_features=200, out_features=400, bias=True

Table 3: Model architecture of Vel-FC.
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